NASA completes first successful in-space 3D-printing project

The 3D printer installed aboard the International Space Station has successfully printed its first object: a part for the printer itself.

ISS Commander Barry "Butch" Wilmore displaying the first object 3D printed in space. NASA

The International Space Station's 3D printer is installed, it's operational -- and it's now produced the first object to be 3D printed in space, completed November 24 at 9:28 pm GMT.

The printer was installed on the ISS as a means of testing the feasibility of astronauts manufacturing their own parts and tools in microgravity; so the first object printed seems rather apropos. It's a part for the printer itself -- a faceplate for the extruder printhead, emblazoned with the logo for Made In Space, the company that designed and built the 3D printer for NASA, and the NASA logo.

"When the first human fashioned a tool from a rock, it couldn't have been conceived that one day we'd be replicating the same fundamental idea in space," said Made In Space CEO Aaron Kemmer. "We look at the operation of the 3D printer as a transformative moment, not just for space development, but for the capability of our species to live away from Earth."

The idea behind on-board manufacturing is to minimise the shipping of parts and tools from Earth -- the way astronauts currently receive such items -- and expedite the space station's self sufficiency. The 3D printer installed in the ISS' Microgravity Science Glovebox is a model the ISS team is using to experiment with the concept.

The first phase of testing will see the astronauts printing out a variety of test coupons, parts and tools. These will be shipped back to Earth to be compared with the same objects printed by an identical printer on the ground, to see how well the printer operates in microgravity. They will be tested for tensile strength, torque, flexibility and other factors. The results of these tests will allow Made In Space to perfect the second iteration of their microgravity 3D printer, which will be shipped to the ISS in early 2015.

"This project demonstrates the basic fundamentals of useful manufacturing in space. The results of this experiment will serve as a stepping stone for significant future capabilities that will allow for the reduction of spare parts and mass on a spacecraft, which will change exploration mission architectures for the better," said Made In Space Director of Research and Development Mike Snyder, also principal investigator for the experiment. "Manufacturing components on demand will yield more efficient, more reliable and less Earth dependent space programs in the near future."

The part installed on the 3D printer, holding the wiring in place in the printhead. Made In Space
Featured Video