Electric cars, hybrids, fuel cells and more: Which is best for you?

Maybe you're shopping for an EV, but perhaps a hybrid is a better fit. You'll know after reading through this explainer.

Kyle Hyatt Former news and features editor
Kyle Hyatt (he/him/his) hails originally from the Pacific Northwest, but has long called Los Angeles home. He's had a lifelong obsession with cars and motorcycles (both old and new).
Kyle Hyatt
4 min read
Tesla Model Y
Enlarge Image
Tesla Model Y

Battery-electric cars, like the Model Y, are just one option.


You've got plenty of choices when it comes to buying a fuel efficient or zero-emissions vehicle. But, not every powertrain alternative to the internal-combustion engine is right for everyone. Like so many things, there are pros and cons to electric cars, hybrids, fuel cell vehicles and more in between.

For sure, all of this can be confusing. Don't feel overwhelmed. We're here to help you understand the difference between a mild-hybrid, a hybrid and other variations. And it has nothing to do with spices, by the way. Whether it's an electric vehicle or perhaps something else has caught your eye, read on below as we break down each kind of electrified vehicle, plus their pros and cons so you can make the best buying decision for your electrified vehicle.

Read more: Best electric cars for 2021

Enlarge Image

Yeah, even trucks are in on the mild-hybrid game.

Jon Wong/Roadshow

Mild hybrid

A mild hybrid system is the simplest and most cost-effective way of adding electric drivetrain components to a vehicle powered by an internal combustion engine. In a mild hybrid system, the ICE will often shut itself off entirely under no-load conditions such as coasting down a hill or coming to a stop. The hybrid system allows the ICE to be restarted almost instantaneously and can power ancillary systems on the vehicle such as the stereo or air conditioning. Some mild hybrid systems will feature regenerative braking or will offer power-assist or torque-fill to the ICE, but all lack the ability to run solely on electric power.


  • Can power many of a car's electrical systems.
  • Stop-start system saves fuel during idle.
  • Can reduce turbo lag by torque-filling until the engine comes on boost.
  • Lighter weight compared to other electrified vehicles.
  • Lower complexity.
  • Lower cost.


  • Increased cost and complexity versus internal combustion-only engines.
  • No full-EV mode.
2020 Toyota Prius XLE AWD-e
Enlarge Image
2020 Toyota Prius XLE AWD-e

The OG hybrid.

Craig Cole/Roadshow

Series hybrid

The series hybrid -- also known as power split or parallel hybrid -- is what most people think of when they think of a hybrid vehicle. These use a downsized ICE to provide power at higher speeds and in higher load conditions, and a battery-electric system to move the vehicle at low speeds and low-load conditions. This allows the ICE to work in its ideal efficiency range, thus providing excellent fuel economy, especially in city driving conditions.


  • Excellent efficiency at around-town speeds.
  • Gasoline-powered ICE for longer range (and longer journeys).
  • Offers a good compromise between efficiency, usability and overall cost.


  • Typically higher cost than a purely ICE-driven vehicle of the same size.
  • Maximizing efficiency means reducing power output.
2021 Toyota RAV4 Prime
Enlarge Image
2021 Toyota RAV4 Prime

The RAV4 Prime has a whole lot of electric range to it.

Emme Hall/Roadshow

Plug-in hybrid

The plug-in hybrid is the next logical step forward from the series hybrid system. These cars move closer to the fully electric vehicle side of the continuum, with the ability to go longer distances on electric power alone. The plug-in part of their name comes from their ability to be plugged into an electric car charging station, rather than just relying on the ICE and regenerative braking for battery power, thus effectively eliminating range anxiety. Another area where plug-in hybrids differ from either mild hybrids or series hybrids is in the size of their battery pack. This is what gives them their extended EV-only range.


  • Increased range over battery electric vehicles due to a range-extending gasoline engine.
  • Lower purchasing cost compared to BEVs.
  • Lower running cost compared to series hybrids.


  • More expensive to buy than series hybrids or mild hybrids.
  • Larger battery packs mean more weight.
  • More complex than mild hybrids.
2018 Tesla Model 3 Performance
Enlarge Image
2018 Tesla Model 3 Performance

Everyone knows the Model 3.

Nick Miotke/Roadshow

Battery electric

Battery electric vehicles are mostly what they sound like: A big battery with at least one electric drive motor wired to it. Oh, and tons of complex software to manage the thousands of individual cells that make up that big battery. Mechanically speaking, BEVs are the least complex of all the vehicles we're covering when you consider that even the simplest multi-cylinder internal combustion engine has many hundreds of moving parts, while an electric motor only has its rotor. Purely electric vehicles are becoming more and more common, thanks to innovation from relatively new companies like Tesla and industry stalwarts like and .


  • Mechanical simplicity means less maintenance than ICE.
  • Tons of instant torque.
  • Nearly silent operation.
  • Electricity is cheap, for now.
  • No tailpipe, therefore no emissions and no emissions testing.
  • Low center of gravity is great for vehicle handling.


  • More expensive than similar size series hybrids or ICE vehicles.
  • Limited range.
  • Lengthy charging times.
  • Charging station infrastructure is still up and coming. 
  • Impractical for most people unless you have 240-volt Level 2 charging at your home or parking spot.
  • Higher weight than similarly sized vehicles.
  • Uncertain environmental impact for end-of-life battery disposal.
2020 Hyundai Nexo
Enlarge Image
2020 Hyundai Nexo

The Hyundai Nexo is only available in select areas.

Daniel Golson/Roadshow

Hydrogen fuel cell

A fuel cell takes hydrogen and oxidizes it to create an electrical charge, which is then channeled into a battery and used by electric motors. This technology has been around in automobiles for a few decades, but due to costs, size of components and a relative lack of infrastructure, there aren't many companies still working with it. Miniaturization of tech in the last few years has made hydrogen FCVs more commercially viable, and we're starting to see more interest from manufacturers like Honda and .


  • No need to charge; simply fill your car with hydrogen and go.
  • Silent operation, much like a BEV.
  • Only emission is water.


  • Hydrogen prices fluctuate wildly, oftentimes more expensive than fossil fuels.
  • Limited refueling network outside of select cities such as Los Angeles or San Francisco.
  • Hydrogen tanks can eat into the passenger compartment or cargo room if the vehicle wasn't designed from the ground up for fuel cells.