X

Wild new microchip tech could grow brain cells on your skin

A simple zap from a small chip could be enough to reprogram skin cells to perform other valuable functions, like carrying blood or even helping you think.

Eric Mack Contributing Editor
Eric Mack has been a CNET contributor since 2011. Eric and his family live 100% energy and water independent on his off-grid compound in the New Mexico desert. Eric uses his passion for writing about energy, renewables, science and climate to bring educational content to life on topics around the solar panel and deregulated energy industries. Eric helps consumers by demystifying solar, battery, renewable energy, energy choice concepts, and also reviews solar installers. Previously, Eric covered space, science, climate change and all things futuristic. His encrypted email for tips is ericcmack@protonmail.com.
Expertise Solar, solar storage, space, science, climate change, deregulated energy, DIY solar panels, DIY off-grid life projects. CNET's "Living off the Grid" series. https://www.cnet.com/feature/home/energy-and-utilities/living-off-the-grid/ Credentials
  • Finalist for the Nesta Tipping Point prize and a degree in broadcast journalism from the University of Missouri-Columbia.
Eric Mack
2 min read
02-arm.jpg

Researchers demonstrate a process known as tissue nanotransfection (TNT). When it comes to healing, this TNT is the bomb.

The Ohio State University Wexner Medical Center

It's usually bad news to have something growing on your skin, but new technology uses that all important layer as a sort of garden to "grow" whatever types of cells your body might need to treat an injury or disease, be it in a limb or even the brain.

Researchers at the Ohio State University Wexner Medical Center have developed a nanochip that uses a small electrical current to deliver new DNA or RNA into living skin cells, "reprogramming" them and giving them a new function.

"It takes just a fraction of a second. You simply touch the chip to the wounded area, then remove it," Chandan Sen, director of the Center for Regenerative Medicine and Cell-Based Therapies at Ohio State, said in a statement. "At that point, the cell reprogramming begins."  

In a study published in the journal Nature Nanotechnology, Sen's team used a technology called Tissue Nanotransfection (TNT) to create new blood vessels in pigs and mice with badly injured limbs that lacked blood flow. 

They zapped the animals' skin with the device, and within about a week, active blood vessels appeared, essentially saving the creatures' legs. The tech was also used to create nerve cells from skin that were then harvested and injected into mice with brain injuries to help them recover.

"By using our novel nanochip technology, injured or compromised organs can be replaced," Sen said. "We have shown that skin is a fertile land where we can grow the elements of any organ that is declining." 

While it sounds futuristic, reprogramming skin cells is not a new idea. The ability to change skin into pluripotent stem cells, sometimes called "master" cells, earned a few scientists a Nobel Prize half a decade ago. But the new nanochip approach improves upon that discovery by skipping the conversion from skin to stem cell and instead converting a skin cell into whatever type of cell is desired in a single step. 

"Our technology keeps the cells in the body under immune surveillance, so immune suppression is not necessary," Sen says.

By now I think we've all learned that beauty is only skin deep, but it might take a while to learn that the same could go for cures, at least if the system works just as well on people. 

Next up, the scientists hope to find out by continuing to test their technology in human trials. The aim is that it could eventually be used to treat all sorts of organ and tissue failure, including diseases like Parkinson's and Alzheimers.  

Crowd Control: A crowdsourced science fiction novel written by CNET readers.

Solving for XXThe tech industry seeks to overcome outdated ideas about "women in tech."