iPhone 14 Wish List 'House of the Dragon' Review Xbox Game Pass Ultimate Review Car Covers Clean Your AirPods 'The Rehearsal' on HBO Best Smart TV Capri Sun Recall
Want CNET to notify you of price drops and the latest stories?
No, thank you

Paint-on lasers promise faster chip future

Quantum engineering with a hairdryer may prove the solution to a chip problem that's still 10 years away.

Researchers at the University of Toronto have produced a new form of laser that can be made by painting surfaces with a liquid.

In an announcement made earlier this month, the researchers claimed the development could lead to very fast chip interconnections circumventing a future barrier to faster computer designs.

"We've made a laser that can be smeared onto another material," Professor Ted Sargent, a research chair in nanotechnology at the university, said in a statement. "This is the first paint-on semiconductor laser to produce the invisible colors of light needed to carry information through fiber optics. The infrared light could, in the future, be used to connect microprocessors on a silicon computer chip," he said.

Electrical interconnects suffer from various physical problems of mutual interference and increasing resistance that get worse as the devices get smaller and faster. Intel has previously said that above around 10GHz signaling speed, copper interconnects may stop being viable--a frequency that's expected to be reached in about 10 years' time. Lasers have the potential to work much faster with fewer problems, provided they can be integrated effectively with the electronics of the silicon chip.

The University of Toronto laser uses nanoparticles, which are tiny motes of dust that are akin to customized atoms and that can be suspended in a liquid like particles in paint. Like the constituents of paint, they can be made to be particularly active at certain colors, with the electronic configuration of the particles additionally set up to absorb and emit photons in a way capable of supporting laser light production.

"We crystallized precisely the size of the nanoparticles that would tune the color of light coming from the laser. We chose nanoparticle size, and thus color, the way a guitarist chooses frets to select the pitch of the instrument," researcher Sjoerd Hoogland said. "Optical data transfer relies on light in the infrared--light with a wavelength roughly 1.5?m that travels further in glass than light of other frequencies. We made our particles just the right size to generate laser light at exactly this wavelength."

Once painted onto the right structure and allowed to dry--in demonstrations, the researchers have used a miniscule glass tube and a hairdryer--the dots form a device that will emit laser light if pulsed with ordinary light in the right way. The results are good, claim the researchers, with the light being particularly insensitive to variations in frequency caused by temperature.

Rupert Goodwins of ZDNet UK reported from London.