Live: 300+ Best Black Friday Deals Live: Black Friday TV Deals BF Deals Under $25 BF Deals Under $50 5 BF Splurges 8 BF Must-Haves 15 Weird Amazon BF Deals BF Cheat Sheet
Want CNET to notify you of price drops and the latest stories?
No, thank you

Invisibility cloak moving closer into view?

Scientists from Duke University say they have significantly improved on their earlier efforts at producing an invisibility cloak that can hide an object from visible light.

Clock with bump
The new cloak with the bump, left, and the prototype, right.
Duke University

That cloaking device we've been dreaming of appears to be one step closer to actual cloakdom, so start pondering the mischievous possibilities.

Scientists from Duke University have improved on their earlier efforts at producing an invisibility cloak, coming up with a new type of device they say is significantly more sophisticated at cloaking an object (and eventually a person?) from visible light.

The device is made from a light-bending composite material that can detour electromagnetic waves around an object and reconnect them on the other side. That creates an effect similar to a distant mirage you'd see hovering above a road on a hot day.

In Duke's latest experiments, a beam of microwaves aimed through the cloaking device at a "bump" on a flat mirror surface bounced off the surface at the same angle, as if the bump wasn't there. Additionally, the device prevented the formation of scattered beams that would normally be expected from such a perturbation. (The team details its findings in far more technical terms than I ever could in the latest issue of Science magazine.)

David Smith with cloaking device
"In effect, we are creating an engineered mirage with this latest cloak design," said David Smith, an engineering professor at Duke. Duke University

"The difference between the original device and the latest model is like night and day," said David R. Smith, a professor of electrical and computer engineering at Duke, and the senior member of the research team. "The new device can cloak a much wider spectrum of waves--nearly limitless--and will scale far more easily to infrared and visible light. The approach we used should help us expand and improve our abilities to cloak different types of waves."

The newest cloak measures 20 inches by 4 inches and is less than an inch high. It's composed of thousands of individual pieces of so-called metamaterials, made of the fiberglass material used in circuit boards and etched with copper.

It took nine days to get the latest device from conception to fabrication, compared with the four months it took to create the original device. Suddenly, we're imagining cloak companies springing up everywhere.

Smith envisions many possible applications for the devices. By eliminating obstructions, they could improve wireless communications, he said, or acoustic cloaks could serve as protective shields, preventing the penetration of vibrations, sound, or seismic waves.

Scientists at the University of California at Berkeley have conducted similar research into redirecting light around 3D objects. Please note: no Harry Potter references were used in the writing of this post.