MIT physicists generate new form of matter

Researchers at MIT report that they have become the first to create a new form of matter in the lab: a gas that exhibits superfluidity, or the ability to flow without resistance, at a "high" temperature.

Potentially, observations about the material may help scientists understand other phenomenon such as superconductivity, a state where electrical resistance disappears and electricity flows without dissipating, or the dense matter found in neutron stars.

While scientists are still trying to characterize these phenomena, these experiments could one day lead to new types of magnets or different ways to transport electricity. The work was headed up by Nobel prize winner and MIT professor. Wolfgang Ketterle.

Like superconductivity, superfluidity occurs at extremely low temperatures. The matter created by MIT existed at 50 nanokelvin degrees above absolute zero, or 50 billionths of a degree about--273 Celsius. Nonetheless, that is high for these experiments.

A superfluid gas can be clearly distinguished from a normal gas when it is rotated, according to MIT. A normal gas rotates like an ordinary object, but a superfluid can only rotate when it forms vortices similar to mini-tornadoes. This gives a rotating superfluid the appearance of swiss cheese or a wiffle golf ball.

Tags:
Tech Culture
About the author

    Michael Kanellos is editor at large at CNET News.com, where he covers hardware, research and development, start-ups and the tech industry overseas.

     

    Join the discussion

    Conversation powered by Livefyre

    Show Comments Hide Comments
    Latest Galleries from CNET
    Top-rated reviews of the week (pictures)
    Best iPhone 6 and iPhone 6 Plus cases
    Make your own 'Star Wars' snowflakes (pictures)
    Bento boxes and gear for hungry geeks (pictures)
    The best tech products of 2014
    Does this Wi-Fi-enabled doorbell Ring true? (pictures)