MIT physicists generate new form of matter

Researchers at MIT report that they have become the first to create a new form of matter in the lab: a gas that exhibits superfluidity, or the ability to flow without resistance, at a "high" temperature.

Potentially, observations about the material may help scientists understand other phenomenon such as superconductivity, a state where electrical resistance disappears and electricity flows without dissipating, or the dense matter found in neutron stars.

While scientists are still trying to characterize these phenomena, these experiments could one day lead to new types of magnets or different ways to transport electricity. The work was headed up by Nobel prize winner and MIT professor. Wolfgang Ketterle.

Like superconductivity, superfluidity occurs at extremely low temperatures. The matter created by MIT existed at 50 nanokelvin degrees above absolute zero, or 50 billionths of a degree about--273 Celsius. Nonetheless, that is high for these experiments.

A superfluid gas can be clearly distinguished from a normal gas when it is rotated, according to MIT. A normal gas rotates like an ordinary object, but a superfluid can only rotate when it forms vortices similar to mini-tornadoes. This gives a rotating superfluid the appearance of swiss cheese or a wiffle golf ball.

Featured Video
This content is rated TV-MA, and is for viewers 18 years or older. Are you of age?
Sorry, you are not old enough to view this content.

Roku 4: Our favorite TV streaming system gets 4K video and a remote locator

Ever lose your remote in the couch cushions? Ever wish you could stream 4K Netflix without having to use your TV's built-in app? Roku's new high-end player, the $129 Roku 4, brings these new extras to its best-in-class streaming ecosystem.

by David Katzmaier