X

Another mysterious deep space signal traced to the other side of the universe

Fast radio bursts suddenly seem to be everywhere in the news, but they're still coming from very far away.

Eric Mack Contributing Editor
Eric Mack has been a CNET contributor since 2011. Eric and his family live 100% energy and water independent on his off-grid compound in the New Mexico desert. Eric uses his passion for writing about energy, renewables, science and climate to bring educational content to life on topics around the solar panel and deregulated energy industries. Eric helps consumers by demystifying solar, battery, renewable energy, energy choice concepts, and also reviews solar installers. Previously, Eric covered space, science, climate change and all things futuristic. His encrypted email for tips is ericcmack@protonmail.com.
Expertise Solar, solar storage, space, science, climate change, deregulated energy, DIY solar panels, DIY off-grid life projects. CNET's "Living off the Grid" series. https://www.cnet.com/feature/home/energy-and-utilities/living-off-the-grid/ Credentials
  • Finalist for the Nesta Tipping Point prize and a degree in broadcast journalism from the University of Missouri-Columbia.
Eric Mack
2 min read
owens-valley-array-10v1-nw-max-1400x800

The Owens Valley Array in California's Sierra Nevada mountains.

Caltech/OVRO/G. Hallinan

Since 2007, astronomers have been finding very brief, powerful signals from across the cosmos in observations gathered by radio telescopes. In the past week, researchers pinpointed the location of a non-repeating signal for the first time, and two days later, another group announced they'd discovered nine more. The sources of these so-called "fast radio bursts" remains a mystery, but recently researchers have been honing their ability to locate their origins.

On Tuesday, a team using CalTech's Owens Valley Radio Observatory near Bishop, California, reported that it managed to capture a new, non-repeating signal dubbed FRB 190523 and trace it back to a galaxy nearly 8 billion light-years away.

A number of possible explanations for what causes FRBs have been proposed, ranging from powerful neutron stars to extraterrestrial intelligence.

An accelerated article preview of the OVRO discovery was published online in the journal Nature, less than a week after an Australian team working with the Australian Square Kilometre Array Pathfinder announced it had also traced a non-repeating burst back to its source galaxy, some 4 billion light-years away.

Best places in space to search for alien life

See all photos

As if that wasn't enough FRB poppin' off action for a single week, a Russian observatory also reported a batch of nine more FRBs, including a new repeater. Repeating FRBs are kind of a big deal because they're rare (the latest from Russia is just the third ever to be captured) and easier to trace to a source galaxy.

That's a lot of fast radio burst news for just one week, but even still the nature of FRBs remains one of the biggest mysteries in space science. Offering a little more light, the CalTech team traced FRB 190523 back to a galaxy similar to our own Milky Way, but different from the dwarf galaxy that produced the famous first repeating burst, FRB 121102.

"This finding tells us that every galaxy, even a run-of-the-mill galaxy like our Milky Way, can generate an FRB," says CalTech's Vikram Ravi, lead author of the new paper in Nature, in a release.

Ravi also says future radio telescope arrays like the Deep Synoptic Array, set to open in 2021, will allow researchers to catch and trace many more FRBs.

"Astronomers have been chasing FRBs for a decade now, and we're finally drawing a bead on them. ... Now we have a chance of figuring out just what these exotic objects might be."

Whatever the source turns out to be, it's worth remembering that the mysterious signals traveled billions of years to reach us, so if the explanation is aliens, they're some very ancient aliens.

What is a black hole? The universe's dark, mysterious monsters

See all photos